<<
>>

Физико-химическое изучение клетки

Одним из основных направлений цитологии в первой трети XX в. было изучение физико-химических свойств клетки. Значительные успехи были достигнуты в исследовании физических свойств и коллоидного состояния протоплазмы.

Были получены исчерпывающие данные о ее основных физических свойствах — вязкости, эластичности, электрическом заряде, поверхностном натяжении, концентрации водородных ионов, проницаемости, чувствительности к различным (в частности, лучевым) воздействиям и т. д. Работы Р. Чемберса, Т. Петерфи, Ж. Лёба, В. Зейфрица, Ф. Вебера и многих других заложили основы этой области цитологии. Результаты исследований получили отражение в крупных сводках и руководствах. Таковы: «Физическая химия клетки и тканей» (1911) Р. Гёбера, «Коллоидная химия протоплазмы» (1929) Л. Гейлбруна, «Проблема проницаемости» (1929) Е. Гельхорна, «Протоплазма» (1936) В. Зейфрица и многие другие.

Физико-химическое изучение клетки получило широкое развитие в 20-х годах и в Советском Союзе. Центром исследований в этой области стал московский Институт экспериментальной биологии, руководимый

Н. К. Кольцовым. Именно здесь были выполнены важные работы самого Н. К. Кольцова, С. Н. Скадовского, Г. В. Эпштейна. В итоге было детально изучено влияние на клетку водородных ионов, заложено представление о физико-химических основах раздражимости пигментных, мускульных и железистых клеток. Особенно много внимания Кольцов уделил физико-химическому анализу формы клеток. Именно под этим углом зрения выполнены его классические исследования строения спермиев десятиногих раков, сократительного стебелька сувой- ки и др. Основной задачей Кольцов ставил изучение структур и элементарных процессов, обеспечивающих всю сложность жизни клетки. Книга Кольцова «Организация клетки» (1936), обобщившая результаты его

30-летней работы и отразившая его теоретические представления, внесла существенный вклад в цитологию. Основным выводом из исследований Кольцова и его школы явилось представление о твердом скелете, который в той или иной форме присутствует в любой- клетке и определяет ео организацию.

Физико-химическое изучение клетки велось также в Институте биохимии им. А. Н. Баха (Д. JI. Рубинштейн, В. А. Дорфман и др.). Выполненные здесь исследования касались вопросов проницаемости клетки, электрометрии (в первую очередь изучения клеточных потенциалов), а также ее диэлектрических свойств.

Для выяснения физико-химических свойств клетки много сделал в Московском университете А. В. Румянцев, который справедливо может считаться одним из основателей московской цитологической школы. Работы Румянцева, начало которых относится к первой половине 20-х годов, посвящены изучению строения и свойств живой клетки при воздействии разнообразных химических и физических факторов. Они содержали значительную долю здорового скептицизма по отношению к результатам, полученным на фиксированных и окрашенных препаратах. И действительно, некоторые классические клеточные структуры оказались всего лишь артефактами. Так, уже в первой большой цитологической работе (1925), посвященной изучению протоплазмы корненожек, Румянцев выяснил природу так называемых хромидий — цитоплазматических образований, окрашивающихся подобно хроматину, которые одно время считались важными органоидами клетки.

Румянцев показал, что речь идет об остатках разрушенных митохондрий и аппарата Гольджи, вряд ли имеющих какое-либо физиологическое значение.

Метод культуры ткани Румянцев использовал для решения не гистологических или физиологических, а именно цитологических задач. Данные, полученные на клетках культуры ткани, отражены в серии работ, вышедших в 1927—1929 гг. и объединенных общим названием «Цитологические исследования в тканевых культурах». Много цитологических данных содержится в монографии Румянцева «Культуры тканей вне организма и их значение в биологии» (1932).

На клетках культуры ткани были исследованы аппарат Гольджи, митохондрии, структуры ядра, строение цитоплазмы в норме и при воздействии разнообразных физических и химических факторов — изменении реакции среды, воздействии некоторых ионов и солей. Несмотря на кажущуюся пестроту вопросов, эти исследования имели свою внутреннюю логику — изучалась протоплазма как субстрат жизненных явлений, выявлялись пределы ее реактивности, устанавливались причины ошибок, основанных на некритическом отношении к результатам изучения статических картин.

Некоторые исследователи уже в первые десятилетия XX в. пытались связать данные о физико-химических свойствах клетки с ее функциями. Новое физиологическое направление в цитологии особенно отчетливо выявилось в работах Д. Н. Насонова. В начале 20-х годов он приступил к изучению одного из труднейших для истолкования органоидов клетки— аппарата Гольджи. Открытая в конце XIX в., эта структура привлекала к себе пристальное внимание исследователей, однако вопрос о реальном существовании и особенно функциональном значении аппарата Гольджи долгое время оставался открытым. В результате исследования, проведенного на различных железах амфибий, Насонов (1923, 1963) при- ' шел к заключению, что аппарат Гольджи является основным органоидом

внутриклеточной секреции. В своих исследованиях он использовал экспериментальный подход — животным вводился пилокарпин, стимулирующий клеточную секрецию, что приводило к освобождению клетки от секрета и позволяло исследовать роль аппарата Гольджи в возникновении процесса секреции.

Почти одновременно с изучением аппарата Гольджи Насоновым аме-. риканский исследователь Р. Боуэн (1924, 1925) выполнил серию работ, посвященных сперматогенезу у насекомых и секреторному процессу в железах моллюсков, амфибий, птиц и млекопитающих. Он получил результаты, полностью совпавшие с выводами Насонова: аппарат Гольджи npoJ дуцирует клеточный секрет. Одновременно Боуэн показал существование различий в структуре этого органоида у беспозвоночных и позвоночных и высказал предположение, что такие различия связаны с особенностями секреции этих групп.

В одной из работ Насонова (1926) было исследовано накопление кислого витального красителя (трипанового синего) в клетках печени и почек различных позвоночных. При этом было показано, что краситель концентрируется в области аппарата Гольджи, не вызывая каких-либо его морфологических изменений. Полученные результаты дали автору основание считать, что деятельность аппарата Гольджи сводится к избирательной концентрации находящихся в клетке веществ, независимо от того, образуются ли они на месте или поступают в клетку извне. Эти представления Насонова о функции аппарата Гольджи в основном сохраняют свое значение и в настоящее время.

Большое число исследований первой трети XX в. было посвящено витальному окрашиванию. Биологическое значение этого метода заключается в том, что он дает возможность прижизненно изучить закономерности поступления, накопления и выделения входящих в клетку веществ. Иными словами, он позволяет создать модель процессов обмена веществ. Витальное окрашивание (его феноменология и механизм) детально описаны в работах Г. Эванса и В. Шулемана (1915) и В. Меллендорфа (1920). Большую роль в развитии этого направления исследований сыграли работы Н. Г. Хлопина (1927), выдвинувшего представление о крино- мах — структурах, предсуществующих в клетке или возникающих заново, которые связывают попадающие в клетку вещества, в частности красители. В дальнейшем ряд важных исследований по изучению реакции клетки на введение анилиновых красителей был выполнен Б. В. Кедровским (1936), разработавшим представление о роли гранул как сегрегационного аппарата клетки. С развитием электронно-микроскопических исследований выяснилось, что гранулярный аппарат клетки тесно связан с ультра- микроскопическими структурами — лизосомами, которым в настоящее время отводится важная роль в физиологии нормальной и патологически измененной клетки.

Значение витальной окраски для характеристики физиологического состояния клетки особенно четко показано в работах Д. Н. Насонова и

В. Я. Александрова, сформулировавших теорию паранекроза (1940). Она основывалась на следующих наблюдениях: в норме основные красители откладываются в виде гранул в цитоплазме, ядро остается неокрашенным и интенсивность гранулообразования сравнительно невелика. При умеренном раздражении, связанном с уменьшением дисперсности белков цитоплазмы и с повышением ее сорбционных свойств, количество и размеры гранул возрастают. Значительное повреждение клетки сопровождается потерей способности к гранулообразованию, появлением диффуз- ДМИТРИЙ НИКОЛАЕВИЧ НАСОНОВ (1895—1957)

ной окраски цитоплазмы и прокрашиванием структур ядра. Эти изменения, наблюдаемые при разнообразных внешних воздействиях, являются монотонным ответом на них любой клетки и соответствуют ее своеобразному некробиотическому состоянию, которое было названо авторами паранекрозом. Ранние стадии этого состояния обратимы. В гибнущей клетке вследствие денатурации белков диффузная окраска цитоплазмы и ядра сохраняется.

Авторы рассматривают образование гранул (или оседание красителя на предсуществующих структурах) как проявление действия защитного механизма, с помощью которого из основной цитоплазмы удаляются посторонние или вредные вещества. В случаях, когда клетка повреждена, этот защитный механизм нарушается и гранулярная окраска становится уже невозможной. Таким образом, гранулообразование может служить одним из достаточно тонких индикаторов физиологического состояния клетки не только при естественных колебаниях ее жизнедеятельности, но и в тех случаях, когда на клетку действуют извне разнообразные (в том числе повреждающие) факторы.

Теория паранекроза дает возможность объяснить однообразие ответа клетки на разнообразные внешние воздействия. Она послужила основой при изучении другого, очень важного раздела физиологии клетки — проблемы проницаемости.

Изучение проницаемости

Эта проблема начиная с 20-х годов XX в. привлекла к себе большое внимание цитологов и породила множество гипотез, толкований и споров.

Представления Э. Пфеффера и Г. де Фриза (конец XIX в.) положили начало теории клеточной проницаемости, в которой обменные процессы, протекающие в клетках, ставились в тесную связь с наличием полупроницаемой мембраны. В ее защиту выступил, в частности, немецкий биохимик Е. Овертон (1895, 1899, 1902). Не располагая прямыми доказательствами существования полупроницаемой мембраны, Овертон на основании косвенных физико-химических данных выдвинул липидную (ли- поидную) теорию клеточной проницаемости, согласно которой плазматическая мембрана представляет собой пленку из жироподобных веществ — липоидов. Постепенно стали накапливаться факты, свидетельствовавшие о несоответствии количеств проникающих в клетку веществ их растворимости в липоидах, а также поступлении в нее веществ, в липоидах совершенно не растворимых. Пытаясь спасти теорию Овертона, его соотечественник А. Натансон (1904) высказал предположение о мозаичном строении мембраны. В 1908—1913 гг. немецкий физиолог В. Руланд развил получившую широкую известность теорию ультрафильтра, или «сита», согласно которой в полупроницаемой мембране имеются поры определенного диаметра, через которые в клетку могут проникать лишь молекулы соответствующих размеров. Однако, как справедливо отметили Р. Колландер и Г. Берлюид (1933), теория Руланда не объясняла того факта, что проницаемость многих растительных клеток растет для веществ гомологического ряда по мере увеличения в них числа атомов углерода. Поэтому они предложили соединить липидную теорию с теорией ультрафильтра, допустив тем самым существование двух разнородных механизмов, регулирующих проникновение в клетку молекул различной природы. Эта точка зрения в 30—40-е годы получила поддержку многих биологов (см. главу 11).

Но и в таком, усовершенствованном виде мембранная теория оказалась неспособной объяснить целый ряд явлений и прежде всего основной факт — стационарное распределение веществ в клетке, качественно отличное от состояния простого водного раствора. Слабой стороной этой теории было также игнорирование всех остальных компонентов клетки. В 1907 г. ее впервые подвергли критике М. Фишер и Г. Моор, которые рассматривали поступление в клетку различных веществ не как следствие осмотических и диффузионных закономерностей, а как результат коллоидно-химических процессов, протекающих в самой протоплазме. Сомнения в решающей роли плазматической мембраны в обеспечении проницаемости были высказаны В. В. Лепешкиным (1924, 1930) и Д. А. Сабининым (1920—1925); последний подробно исследовал зависимость проницаемости от реакции среды.

Однако наиболее обоснованные возражения против мембранной теории сформулировали в 30-е годы Д. Н. Насонов и В. Я. Александров, а позднее А. С. Трошин (1956). Они разработали сорбционную теорию проницаемости. Согласно этой теории, решающая роль в распределении веществ, проникающих в клетку, принадлежит сорбционным отношениям, устанавливающимся между протоплазмой клетки в целом и окружающей средой. По удачному выражению А. С. Трошина, сорбционную теорию можно было бы назвать протоплазматической теорией проницаемости. Сорбционная теория основывается на следующих положениях: растворимость веществ в протоплазме должна отличаться от растворимости в обычной воде; важнейшим фактором распределения веществ в клетке является их' адсорбция и химическое связывание в протоплазме.

Первоначально казалось, что обе теории совершенно несовместимы. Позже, однако, выяснилось, что их сближение возможно.

Ультраструктура клетки

Широкое использование электронной микроскопии привело к тому, что было существенно дополнено, а в некоторой степени и изменено, традиционное представление о строении клетки.

В настоящее время ведущим является представление о мембранно- вакуолярной системе и об основном матриксе, в который эта система погружена (Ф. Хагено, 1958). Важнейшие процессы жизнедеятельности клетки очень хорошо согласуются с этой схемой ее субмикроскопиче- ского строения.

Для характеристики современного уровня знаний об ультраструктуре клетки весьма показательна эволюция в области представлений об отдельных структурах клетки. С помощью дифференциального центрифугирования первоначально удалось выделить только несколько основных фракций, подлежащих дальнейшему анализу,— ядра, митохондрии и микросомы. В последней фракции были найдены обрывки эндоплазматической сети частично с сидящими на них рибосомами и многочисленные, точнее не идентифицированные, гранулы, получившие сборное название цитоплазматических частиц. В последнее время было выяснено, что в состав этой группы входят совершенно гетерогенные образования, различающиеся как по своей ультраструктуре, так и по функции. Так, были описаны лизосомы (К. Де-Дюв, 1963), носители протеолитических ферментов. Им принадлежит, по-видимому, важная роль аппарата защиты клетки и уничтожения ее поврежденных и отмирающих частей. Характерная особенность лизосом — высокая активность в них кислой фосфата- зы и некоторых нуклеаз.

В качестве самостоятельных структур были выделены микротельца, чрезвычайно широко распространенные в клетках животных и, видимо, растений. Они оказались тесно связанными с каталазой, уратоксидазой и оксидазами аминокислот (3. Грубан, М. Рехцигл, 1969). Идентифицировать эти и некоторые другие структурные элементы клетки удалось благодаря сочетанию морфологического и цитохимического методов.

<< | >>
Источник: И. Е. АМЛИНСКИЙ, Л. Я. БЛЯХЕР. ИСТОРИЯ БИОЛОГИИ С НАЧАЛА ХХ ВЕКА ДО НАШИХ ДНЕЙ. 1975

Еще по теме Физико-химическое изучение клетки:

  1. 3.5.2. Физико-химическая организация хромосом эукариотической клетки 3.5.2.1. Химический состав хромосом
  2. 3.1. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
  3. ИЗМЕНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ТОРФЯНЫХ ПОЧВЗАПАДНОЙ СИБИРИ ПРИ СЕЛЬСКОХОЗЯЙСТВЕННОМ ИСПОЛЬЗОВАНИИ А. С. Моторин, Ю. В. Сивков
  4.   ФИЗИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ АППАРАТУРЫ В ЛАБОРАТОРНОЙ КЛИНИЧЕСКОЙ ДИАГНОСТИКЕ  
  5. Часть II. ИЗУЧЕНИЕ СТРОЕНИЯ И ЖИЗНЕДЕЯТЕЛЬНОСТИ КЛЕТКИ И ТКАНЕЙ, НАСЛЕДСТВЕННОСТИ И ИНДИВИДУАЛЬНОГО РАЗВИТИЯ ОРГАНИЗМОВ
  6. Применение органического анализа для изучения химических процессов в организме
  7. Успехи в изучении коферментов. Доказательство химической общности коферментов и витаминов
  8. 2.4. ЗАКОНОМЕРНОСТИ СУЩЕСТВОВАНИЯ КЛЕТКИ ВО ВРЕМЕНИ 2.4.1. Жизненный цикл клетки
  9. Подход к предмету у наивного физика
  10. Биофизические исследования в физике
  11. Статистическая физика. Основное различие в структуре
  12. Постоянство, не объяснимое классической физикой
  13. Выводы классического физика, будучи далеко не тривиальными, оказываются неверными
  14. Энергетика клетки
  15. 1.5. ПРОИСХОЖДЕНИЕ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ
  16. ЭКОЛОГИЯ КЛЕТКИ
  17. 5.3. ПОЛОВЫЕ КЛЕТКИ