<<
>>

Регуляция активности генов и белков

После проблемы специфичности белкового синтеза на первом месте в молекулярной биологии оказалась проблема регуляции синтеза белков, или, что то же самое, регуляции активности генов.

Функциональная неравнозначность клеток и связанные с ней репрессия и активация генов давно привлекали внимание генетиков, но до последнего времени реальный механизм контроля генной активности оставался неизвестным.

Первые попытки объяснить регуляторную активность генов были связаны с изучением гистонных белков. Еще супруги Стэдман95 в начале 40-х годов XX в. высказывали мысль, что именно гистоны могут играть в этом явлении основную роль. В дальнейшем они получили первые четкие данные о различиях в химической природе гистонных белков. В настоящее время количество фактов, свидетельствующих в пользу этой гипотезы, с каждым годом все более возрастает.

В то же время накапливается все большее число данных, говорящих 0

том, что регуляция генной активности — гораздо более сложный процесс, чеьі простое взаимодействие участков генов с молекулами гистонных белков. В 1960—1962 гг. в лаборатории Р. Б. Хесина-Лурье было выяснено, что гены фагов начинают считываться неодновременно: гены фага Т2 можно разделить на ранние, функционирование которых происходило в первые минуты заражения бактериальной клетки, и поздние, начинавшие синтезировать иРНК после завершения работы ранних генов.

В 1961 г. французские биохимики Ф. Жакоб и Ж. Моно предложили ; схему регуляции активности генов, которая сыграла исключительную

роль в понимании регуляторных механизмов клетки вообще. Согласно j схеме Жакоба и Моно, в ДНК кроме структурных (информационных) ге-

' нов имеются еще гены-регуляторы и гены-операторы. Ген-регулятор коди- I

рует синтез специфического вещества — репрессора, который может при

соединяться как к индуктору, так и к гену-оператору. Ген-оператор сцеплен со структурными генами, а ген-регулятор находится на некотором отдалении от них. Если в среде нет индуктора, например, лактозы, то синтезируемый геном-регулятором репрессор связывается с геном-оператором и, блокируя его, выключает работу всего оперона (блок структурных генов вместе с управляющим ими оператором). Образования фермента в этих условиях не происходит. Если же в среде появляется индуктор (лактоза), то продукт гена-регулятора — репрессор — связывается с лактозой и снимает блок с гена-оператора. В этом случае становится возможной работа структурного гена, кодирующего синтез фермента, и фермент (лактоза) появляется в среде.

По мнению Жакоба и Моно, эта схема регуляции применима ко всем 1

адаптивным ферментам и может иметь место как при репрессии, когда

образование фермента подавляется избытком продукта реакции, тик и

при индукции, когда внесение субстрата вызывает синтез фермента. За исследования регуляции активности генов Жакоб и Моно были удостоены в 1965 г. Нобелевской премии.

Цервоначально эта схема казалась слишком надуманной. Однако впоследствии выяснилось, что регуляция генов по этому принципу имеет место не только у бактерий, но и у друтих организмов.

Начиная с 1960 г. заметное место в молекулярной биологии занимают исследования организации генома и структуры хроматина у эукариотических организмов (Дж. Боннер, Р.

Бриттен, В. Олфри, П. Уокер, Ю. С. Чен- цов, И. Б. Збарский и др.) и по регуляции транскрипции (А. Мирский, Г. П. Георгиев, М. Бернстил, Д. Голл, Р. Цанев, Р. И. Салганик). Долгое время оставалась неизвестной и спорной природа репрессора. В 1968 г. М. Пташне (США) показал, что репрессором является белок. Он выделил его в лаборатории Дж. Уотсона и обнаружил, что репрессор, действительно, обладает сродством к индуктору (лактозе) и одновременно «узнает» ген-оператор лак-оперона и специфически связывается с ним.

В последние 5—7 лет получены данные о наличии еще одной управляющей ячейки генной активности — промоторе. Оказалось, что по соседству с операторным участком, к которому присоединяется продукт, синтезированный на гене-регуляторе — белковом веществе репрессора, имеется другой участок, который также следует отнести к членам регуляторной системы генной активности. К этому участку присоединяется белковая молекула фермента РНК-полимеразы. В промоторном участке должно произойти взаимное узнавание уникальной последовательности нуклеотидов в ДНК и специфической конфигурации белка РНК-полимеразы. От эффективности узнавания будет зависеть осуществление процесса считывания генетической информации с данной последовательностью генов опе- рона, примыкающего к промотору.

Кроме описанной Жакобом и Моно схемы, в клетке существуют и другие механизмы регуляции генов. Ф. Жакоб и С. Бреннер (1968) установили, что регуляция репликации бактериальной ДНК определенным образом контролируется клеточной мембраной. Опыты Жакоба (1954) по индукций разных профагов убедительно показали, что под влиянием различных мутагенных факторов в клетке лизогенных бактерий начинается избирательная репликация гена профага, а репликация генома хозяина блокируется. В 1970 г. Ф. Белл сообщил о том, что в цитоплазму из ядра могут переходить небольшие молекулы ДНК и уже там транскрибироваться.

Таким образом, регуляция активности генов может осуществляться на уровне репликации, транскрипции и трансляции.

Значительные успехи достигнуты в изучении регуляции не только синтеза ферментов, но и их активности. На явления регуляции активности ферментов в клетке указывали еще в 50-х годах А. Новик и JI. Сцил- лард. Г. Умбаргер (1956) установил, что в клетке существует весьма рациональный путь подавления активности фермента конечным продуктом цепи реакций по типу обратной связи. Как было установлено Ж. Моно, Ж. Шанже, Ф. Жакобом, А. Парди и другими исследователями (1956— 1960), регуляция активности ферментов может осуществляться по алло- стерическому принципу. Фермент или одна из его субъединиц, кроме сродства к субстрату, обладает сродством к одному из продуктов цепи реакций. Под влиянием такого продукта-сигнала фермент так изменяет свою конформацию, что утрачивает активность. В результате вся цепь ферментативных реакций выключается в самом начале. На существенную роль конформационных изменений белка в ферментативных реакциях, а в-- известном смысле и на наличие аллостерического эффекта, указывали Д. Уимен и Р. Вудворд (1952; лауреат Нобелевской премии, 1965).

<< | >>
Источник: И. Е. АМЛИНСКИЙ, Л. Я. БЛЯХЕР. ИСТОРИЯ БИОЛОГИИ С НАЧАЛА ХХ ВЕКА ДО НАШИХ ДНЕЙ. 1975

Еще по теме Регуляция активности генов и белков:

  1. 3.6.6.3. Регуляция экспрессии генов у прокариот
  2. 3.6.6. Регуляция экспрессии генов на геномном уровне организации наследственного материала
  3. Регуляция генной активности
  4. 3.6.5. Характеристика генотипа как сбалансированной по дозам системы взаимодействующих генов 3.6.5.1. Значение сохранения дозового баланса генов в генотипе для формирования нормального фенотипа
  5. Процессы регуляции в клетке
  6. Проблема внутрихромосомной локализации генов
  7. Эпигенетическая регуляция онтогенеза
  8. 6.3.1.3. Наследование признаков, обусловленных взаимодействием неаллельных генов
  9. Генетическая регуляция онтогенеза
  10. 11.5. ГЕНЕТИКО-АВТОМАТИЧЕСКИЕ ПРОЦЕССЫ (ДРЕЙФ ГЕНОВ)
  11. Устойчивость генов, прошедших естественный отбор
  12. Структура и функции белков